
Performance Analysis of Anonymous

Communication Channels Provided by Tor

Andriy Panchenko, Lexi Pimenidis, Johannes Renner

Department of Computer Science – Informatik IV

RWTH Aachen University

Ahornstr. 55, D-52074 Aachen, Germany

Email: {panchenko,pimenidis,renner}@cs.rwth-aachen.de

Abstract— Providing anonymity for end-users on the Internet
is a very challenging and difficult task. There are currently only
a few systems that are of practical relevance for the provision of
low-latency anonymity. One of the most important to mention is
the Tor network that is based on onion routing. Practical usage
of the system often leads to delays which are not tolerated by the
average end-user. This, in return, discourages many of them from
the use of such systems and hence indirectly lowers the protection
of remaining users due to a smaller user base. In this paper we
show to which extend overloaded nodes and links, as well as
geographical diversity of nodes have an influence on the general
performance of Tor communication channels. After that, we
propose new methods of path selection for performance-improved
onion routing which are based on actively measured latencies and
estimated available capacities using passive observations of link-
wise throughput.

I. INTRODUCTION

With the growth of the digitized world privacy issues get

more and more importance. Anonymous communication is

a basic fundamental building block for privacy-friendly web

browsing, any viable identity management system, privacy-

aware eGovernment, eCommerce and eHealth technologies.

It is also necessary for providing freedom of speech, mind,

and the achievement of democratic principles even in those

countries that try to filter and censor access to information.

Thus, strengthening privacy-enabled communication can be

seen as a major project goal from a social point of view.

Anonymous communication deals with hiding relationships

between communicating parties. Without this protection an

attacker is able to deduce information about the network

addresses of involved senders and recipients. This is often

enough to uniquely identify a person. Time, duration, and

volume of communications can be used by attackers to infer

further information, like e.g. a social relation between two

communicating parties.

Many approaches have been proposed in order to provide

protection on the network layer. Still, only some of them have

been implemented in praxis, e.g. [1], [2]. The most popular

and widespread system today is Tor [1]. The Tor network is a

circuit switching, low-latency anonymizing network to provide

privacy-protection on the network layer. It is an implementa-

tion of the so-called onion routing technology, that is based

on routing TCP streams through randomly chosen paths in a

network of routers using layered encryption and decryption of

the content. The number of servers in the network is currently

about one thousand whereas the number of users is estimated

to be hundreds of thousands [3], [4].

The Tor overlay network itself is very dynamic. Everybody

can join the network and offer available resources for the

other users. Today, usage of Tor often leads to significant

additional delays caused by the network layers. These delays

are often perceived as unnecessary and unacceptable by the

end-users, who then choose to continue surfing without Tor.

One reason for this is that many nodes have limited bandwidth

at their disposal, are overloaded or fail temporarily (e.g. dis-

connected, switched off). This leads to a small user base,

since many users are not willing to sacrifice much of the

usability in order to achieve anonymity. One study indicates

the existence of an acceptable tolerated latency of about 4

seconds for requesting a website [5]. In another study [6],

the authors show differences between polychronic cultures

(e.g. Saudi Arabia) and monochronic ones (e.g. Germany) in

terms of delay-acceptance during web browsing. Users from

polychronic cultures were eager to accept longer delays than

those from monochronic ones. For the use of anonymizing

systems, another reason for a higher delay tolerance of the

users from Saudi Arabia might be the following: due to

censorship they have higher incentives to wait longer in order

to browse anonymously. The subsequent research [7] shows

no considerable difference between tolerated waiting times in

different cultures and a linear relationship between increased

delays and the drop-out-rate of users in JAP [2].

Since the degree of anonymity provided by such a system

is usually linked to the number of active users, the protection

for the remainders is reduced, if a significant number of

users leave the network. Therefore, the long-term objective of

our work is to improve the quality of service of anonymous

communication channels, while sacrificing as little as possible

of the user’s protection. In order to achieve this, we need to

study the reasons for the performance downfall first.

Our contribution in this area is the following:

1) we study reasons for performance degradation in the Tor

network in terms of:

• overloaded Tor nodes and links;

• geographical diversity of routers on a path;

2) we make proposals for improvements in path selection.

II. FUNDAMENTALS

This section covers the basic principles of the onion routing

technology as implemented in Tor, as well as a description of

how the selection of nodes for creating circuits is handled in

currently known implementations of the Tor protocol.

A. Onion Routing

The Tor network is an overlay network consisting of single

servers that are called onion routers (ORs). Currently there

are about 1000 ORs in the Tor network that are running

more or less permanently. Each OR runs on an Internet end-

host and maintains TLS connections to many other ORs

at every time. To anonymize Internet communications, end-

users run an onion proxy (OP) that is listening locally for

incoming TCP-connections to redirect them as streams through

the Tor network. To achieve this, the OP constructs circuits

of encrypted connections through paths of randomly chosen

onion routers. A Tor circuit, per default, consists of three

individual hops, while each hop knows only who has sent the

data (predecessor) and to whom it is relaying to (successor).

The default circuit length of three hops states a reasonable

trade-off between security and performance. To avoid that the

last node of a path (exit node) learns the first (entry node), an

additional third node (middle node) is used.

Clients choose paths for creating circuits by selecting three

suitable servers from a list of all currently active routers,

the so-called directory. Certain trusted nodes therefore act

as directory servers and provide signed documents that are

downloaded by users periodically via HTTP. Such a network

status document contains router descriptors of all currently

known ORs, including several flags that are used to describe

their current states.

During circuit creation, Diffie-Hellman key exchange is

used to establish shared symmetric session keys with each

of the routers in a path. A proxy encrypts all traffic that is

to be sent over a circuit using these keys in corresponding

order. While relaying the data, every hop on the path removes

one layer of encryption, so that only the exit node knows the

actual destination of a stream. Application data is generally

transferred unencrypted on the link from the exit node to the

destined Internet end-host, unless an encrypted connection is

used, e.g. when using TLS/SSL. The operators of exit nodes

are in the first instance responsible for any abuse that is done

using their nodes, which can be a legal risk in some countries.

Once a circuit is established, the proxy can use it as a

tunnel for arbitrary TCP connections through the Tor network,

while multiple TCP-streams can share a single circuit. Proxies

stop using a specific circuit after a configured amount of

time (or data volume), which prevents the users from certain

profiling attacks. On the application layer, the SOCKS protocol

is used to tunnel arbitrary TCP-traffic through the Tor network.

For web-browsing it is further recommended to point a web

browser to Privoxy [8], which can be configured to use SOCKS

for sending HTTP-traffic over Tor while performing basic

application layer filtering.

B. State of the Art in Path Selection

Ideally, all clients would select nodes to be used in virtual

circuits in a completely uniform way from the set of all

currently active routers. Since the probability to be chosen

by clients is the same for all routers, this would offer the

maximum achievable anonymity, but at the cost of perfor-

mance. Without involving any routing metrics, there would

be a security-related advantage: attackers could in no way

influence the path selection of clients. The disadvantage is,

that routers with a weak performance, having very limited

capabilities or bandwidth (e.g. modem users) are chosen with

the same probability as very powerful nodes having abundant

resources.

Beside the legacy Tor software1, two additional indepen-

dent client implementations of the Tor protocol exist. One

of them is OnionCoffee2, where the primary goal was to

provide network layer anonymity to be used within the EU

Project PRIME3. Further, the developers of JAP4 integrated

Tor functionality into their anonymizer. For practical reasons,

this paper considers default Tor and OnionCoffee only.

Both implementations use a similar bootstrapping process

on startup: directory services are contacted to request the list

of signed router descriptors. These descriptors include, among

other things, current bandwidth information and especially an

observed (max-)throughput value for each node. However, the

information contained in the descriptors is created by the nodes

themselves and therefore can not be considered trustworthy. As

soon as enough directory information is gathered, clients begin

creating circuits. A client should maintain at least one general

purpose circuit in a preemptive way (before it is actually

required by any application) in order to save circuit build up

time.

As already described in Section II-A, Tor clients distinguish

between entry, middle and exit nodes [9]. Node operators

need to specify a so called exit policy to narrow or prohibit

connections to hosts outside of the Tor network. Because of the

legal risks of operating an exit node and the high responsibility

for any outbound traffic, there are currently less nodes that

allow outgoing connections to any Internet end-hosts than non-

exit nodes, that can only be chosen by clients on entry or

middle positions of paths.

Selecting the first node of a path also puts a major responsi-

bility on it, since as the network entry, it directly learns the IP

of the initiator of all traffic. Therefore, the standard Tor client

makes use of so-called guard nodes. This means that clients

keep n (the default is n = 3) routers ready that have a high

uptime and are known to be fast and stable. One of these n

long-term guards is then picked as the entry node for all of

this client’s circuits. This way it is avoided that clients will

eventually end up with a corrupted entry node, when choosing

different entries for every new circuit.

1http://tor.eff.org/
2http://onioncoffee.sourceforge.net/
3https://www.prime-project.eu/
4http://anon.inf.tu-dresden.de/

The actual selection of the middle and exit nodes is per-

formed in a probabilistic manner where the probability of a

router to be chosen for a path is proportional to its advertised

bandwidth. To avoid that a router claims to have infinite

bandwidth, an upper bound was introduced, that was recently

raised from 1.5 MBps to 5 MBps. Exit nodes are considered

for entry and middle positions only if the total available

bandwidth of exit nodes is at least one third of the overall

available bandwidth of all routers. In this case, their bandwidth

is lowered in a weighted way in order to not choose possible

exit nodes on other positions too often to contribute towards

load balancing among the nodes.

OnionCoffee is the first Tor client that introduced a so

called ranking index for single routers. This ranking index is a

number between 0 and 1 that is calculated from the uptime of

a node, as well as the average and current bandwidth values

parsed from the router’s descriptor. Nodes are selected in a

weighted probabilistic manner regarding the ranking indices

of the routers. Furthermore, ranking indices may be reduced in

case of a failing router, to decrease the probability of choosing

it again. The end-user is able to specify how big the influence

of this ranking index shall be versus a total uniform selection,

thus giving the user control over the trade-off between security

and performance.

The OnionCoffee Tor client is additionally equipped with

GeoIP data which allows to determine the country and con-

tinent a router is located in, while selecting the nodes. This

makes it possible to put additional geographical constraints

on the circuits. It is currently already possible to e.g. exclude

nodes in specific countries from being used in circuits, allow

only at most one node from the same country, etc.

III. RELATED WORK

Rollyson [10] proposed a method to improve the client

latency in Tor by an enhanced path selection algorithm using

measurements of latencies between the routers. The proposal

requires the Tor directory servers to provide a list of router-to-

router latencies that can be consulted by clients when choosing

the nodes. The proposed algorithm is limited to picking only

the middle node of circuits in an efficient way, because of

issues concerning trustworthiness of entry and requirements

for exit nodes.

Since Tor directory servers do not provide such a list of link-

wise latencies for the clients, the author proposes to use an

approximation technique that is based on measuring latencies

between responsible DNS servers as proposed in [11]. The

quality of the latter is very questionable, because of several

reasons: first of all, DNS servers are often located far away

from the actual hosts, sometimes even on another continent,

considering global ISPs which are common nowadays. Second,

Tor nodes may be overloaded, located behind channels with

narrow bandwidth, which is not reflected in the latencies

between DNS servers.

TorFlow [12] is a multi-purpose framework with the general

aim to improve the performance and security in the Tor

network. It contains an extended implementation of the Tor

Control Protocol [13], a text-based protocol that allows to

implement controllers that are able to control a running

Tor process by listening to events and sending commands.

TorFlow-specific extensions include additional features to sup-

port path building while preserving arbitrary restrictions on the

properties of complete paths as well as single nodes.

Further, the framework contains several controllers that

provide different functionalities. These are e.g. capable to scan

the Tor network for misconfigured or overloaded nodes. On

the long run, TorFlow aims to build an automated, distributed

reputation system that should feed into the directory servers

to provide them with information on the reliability of nodes.

IV. PERFORMANCE ANALYSIS

The main goal of this performance study, and thus our main

contribution, is to find out what are the bottlenecks in the

Tor network, as well as to learn about the overall situational

behavior of the network and limits of nodes regarding various

performance metrics, especially latency and throughput. Such

a study can further serve as an input for the design of methods

that generally improve the performance of onion routing5 by

the means of new path selection algorithms.

This section is structured as follows: at first, results from a

performance analysis that was done in a private Tor network

will be presented. This will give the possibility to study the

limits of various performance metrics, as well as the overall

situational behavior of onion routers in an optimal environ-

ment. Second, we will study the performance of Tor “in the

field” – the real public Tor network. To this end we measured

the time required to establish single circuits, as well as average

RTTs and throughput when using different configurations

and path selection methods. Furthermore, interdependencies

between the different performance metrics will be studied.

Our experimental setup of a private Tor network used Intel

Pentium III Dual Core machines with 1Ghz CPU and 2 GB

RAM on the nodes, while two of the existing Tor client imple-

mentations were evaluated: default Tor and OnionCoffee. The

local backbone is 100Mbps, while using a 10Gbps connection

to the Internet. It should be noted, that the processing in

Section IV-A is completely CPU bound, whereas those in

Section IV-B can be either CPU or network bound.

A. Load Implications on the Performance of Tor

In order to study the implications of load on the behavior

of Tor nodes, we performed measurements in a private Tor

network. Hence we were able to determine important values

like e.g. the maximum possible throughput of a single node,

influence of circuit setup durations on the throughput, etc.

Having knowledge about such values is of great importance for

further refinements of the used path selection methods. So, for

example, knowing the maximum possible throughput and the

average time that is needed to establish a circuit, it is possible

to make conclusions about the load of nodes and/or the

condition of the links between them. Further, it does not make

5Onion routing and Tor are used as synonyms here.

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

Number of Penetrators

Tor
OnionCoffee

Fig. 1. Influence of Penetrators on a Node’s Throughput

sense to believe nodes that are advertising a higher bandwidth

value than the maximum in an optimal environment, which

is represented by our scenario. Similarly, the default Tor

implementation currently clips advertised bandwidth values at

5 MBps.

1) Throughput under Load: The first experiment that was

performed, shows the throughput of a Tor node in dependence

on the number of penetrators that are using this specific node

for creating circuits (see Figure 1). A client continuously

downloads a stream, while other nodes are steadily establish-

ing new circuits involving the node.

The achieved throughput when using the standard Tor

client decreases with the growth of the number of penetrators

until their number reaches about 14. After that, no further

implications on the throughput of a node can be seen. This

results from the performance of the circuit establishment

operations (which includes expensive public key cryptography)

in a separate thread. The throughput reached by OnionCoffee

is below the throughput of the standard Tor client6. This is

due to the fact that the efficiency of cryptographic operations

implementations in the programming language C is much

higher than those written in Java. This was confirmed by

running OnionCoffee in a profiler, where it showed up that

most CPU time was spent in the cryptography library. Due

to the performance issues in the client and not the server, the

throughput of the stream using OnionCoffee was not affected

by the employed number of penetrators.

The results from the next experiment that was conducted

in the private Tor network, show the throughput reached by a

client while a number of other clients perform a download as

well, using the same set of nodes. In Figure 2 it is interesting

to see that the throughput of the measured stream drops down

to 0.5 Mbps when there are 6 streams in parallel, but it remains

nearly constant with the further growth of up to 10 parallel

streams.

2) Circuit Establishment: In the last experiment we were

interested in the time that is required to establish a circuit in

6Please note that the Y-axis in Figure 1 does not start at zero.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

Number of streams in parallel

Throughput

Fig. 2. Stream Throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5 10 15 20 25 30 35 40 45 50

C
ir
c
u
it
 b

u
ild

u
p
-t

im
e
 [
m

s
]

Number of penetrators

Circuit buildup-time

Fig. 3. Circuit Setup Duration

an optimal environment (using the same private Tor network).

We measured the time required to establish a circuit consisting

of three nodes, while having penetrators doing the same task.

This means clients establishing circuits using the same nodes

and closing them right away after the establishment was

successful. Figure 3 shows the time needed for establishing a

circuit consisting of three nodes. In order to calculate the mean

values together with 95% confidence intervals each experiment

was repeated 50 times.

B. Experiments in the Real Tor Network

The following experiments were conducted in the real Tor

network in order to measure the performance of Tor “in the

field”. To this end, we performed measurements of throughput,

latency, and setup durations of circuits. We further paid also

attention to the correlations between different performance

metrics. A strong correlation might possibly enable us to make

conclusions about a circuit’s latency or throughput from its

setup duration only.

1) Circuit Establishment: Table I shows general statistics

on circuit establishments using nodes that were chosen uni-

formly. The row containing create lists the median, mean

times, standard deviation and min/max values that were needed

for the initial creation of a circuit involving the first hop only.

extend 1 lists the average time needed to extend a circuit to its

second hop, and extend 2 the extension to the third hop. total

provides the overall time needed to create a circuit consisting

of three hops. The time is summed up since Tor builds circuits

in a consecutive way, extending them from hop to hop. The

latter is due to the need of establishing symmetric keys during

the circuit setup between the initiator and the onion routers on

the path.

Median(s) Mean(s) Stddev(s) Min/Max(s)

create 0.58 1.18 2.65 0.11/32.89

extend 1 1.23 2.24 3.63 0.10/45.43

extend 2 2.23 4.35 6.54 0.10/48.80

total 4.36 7.78 9.20 0.46/60.72

TABLE I

STATISTICS ON SINGLE STEPS OF CIRCUIT ESTABLISHMENT

Table II provides results of an experiment where setup

durations of circuits using paths consisting of two to four hops

were measured. Besides the actual durations, also the fraction

of failed attempts is depicted. About 30 to 40% of the overall

circuit establishment attempts failed in our experiment, using

uniform selection of the nodes. The reason for this is that

nodes are overloaded or already left the network while their

descriptors are still available.

Median(s) Mean(s) Min/Max(s) Failed(%)

2-Hop 2.13 4.22 0.22/36.15 35

3-Hop 4.99 6.83 0.25/49.21 32

4-Hop 7.18 9.65 0.73/38.37 38

TABLE II

STATS ON CIRCUIT SETUPS USING DIFFERENT PATH LENGTHS

2) RTT and Throughput Comparison: The average RTTs of

circuits using different path lengths were also measured and

are depicted in Figure 4. It is possible to see, how the average

RTT is growing with the increasing hop count. For the standard

Tor path length, involving three single nodes, the mean RTT

measured in our experiment is about 1.6 seconds, whereas for

2-hop paths it is 1.1 s, and for 4-hop paths 1.9 s seconds. Note

that uniform node selection was used for creating all of the

circuits in this experiment.

For achieving the maximal degree of anonymity, routers

would have to be chosen in a completely uniform way, as

already described in Section II-B. For being able to provide an

improved performance, both considered onion routing imple-

mentations – Tor and OnionCoffee – perform path selection in

a probabilistic way regarding bandwidth information provided

by the nodes themselves through their descriptors. Therefore,

nodes that are advertising a higher bandwidth are chosen by

clients with a higher probability respectively.

Note that if path selection is done depending on information

advertised by the routers themselves (e.g. in a probabilistic

way regarding advertised bandwidth), attackers are able to

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2 3 4

R
T

T
 [

s
e

c
o

n
d

s
]

Hop count

mean RTT of 100 circuits

Fig. 4. RTT Comparison of Circuits Using Paths Consisting of 2-4 Hops

influence the selection of clients by advertising a very high

value. Ideally, any newly proposed methods would offer

no possibilities for attackers to influence the path selection

of clients at all. Otherwise, additional mechanisms will be

necessary to somehow minimize the influence of attacker

nodes on the path selection mechanisms of clients. Any such

implications of the used methods have to be studied and

a reasonable tradeoff between the quality of protection and

quality of service has to be found, before any improved

methods will become mature for real life usage.

Table III compares results that were gained by creating at

least 600 circuits with each of the methods. The table shows

mean measured setup durations, RTTs and throughput of all

circuits together with standard deviations (mean/stddev). It can

be seen that choosing paths weighted by advertised bandwidth

values generally leads to significantly better results regarding

all metrics.

Setup(s) RTT(s) Throughput (KB/s)
[mean/stddev] [mean/stddev] [mean/stddev]

UNIFORM 6.31/6.66 1.61/1.16 11.04/14.55

WEIGHTED 3.33/3.91 1.09/0.98 45.33/69.67

TABLE III

COMPARISON OF UNIFORM AND WEIGHTED PATH SELECTION

3) Correlations of Performance Metrics: Further, it is of

great interest to find out whether there is a correspondence

between the time needed to establish a circuit and other

performance metrics (like a circuit’s measured bandwidth or

latency). If significant correlations could be found, it might be

possible to e.g. conclude from a circuit’s long setup duration,

that its latency will not be acceptable in order to satisfy a user’s

current requirements and the user might wish to directly omit

using this circuit in the favor of another one.

Figures 5 and 6 show results from an experiment where

1530 circuits were created, partly using uniformly and partly

weighted probabilistically chosen paths. The performance of

every created circuit in terms of the setup duration, RTT

and throughput, was actively measured directly after the

creation of a circuit. The results from this experiments show

a medium positive correlation of circuit setup durations and

the averaged latencies of the circuits. The sample correlation

coefficient (Pearson product-moment correlation coefficient)

of the considered values is 0.47. Apparently circuits that

were established very quickly, seem to generally deliver lower

latencies than those having experienced long setup durations.

There is, however, only a small negative correlation between

the throughput and RTTs of circuits. This means that one can

generally not deduce that a circuit’s low latency indicates high

throughput rates and vice versa. The computed sample corre-

lation coefficient is −0.34, while the correlation coefficient of

setup durations and measured throughput is −0.16, which can

only be interpreted as a very small negative correlation.

 0

 10

 20

 30

 40

 0 1 2 3 4 5

C
ir
c
u

it
 S

e
tu

p
 [

s
e

c
]

RTT [sec]

1530 circuits (688 uniform + 842 weighted)

Fig. 5. Correlation of RTTs and Setup Durations

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

R
T

T
 [

s
e

c
]

Throughput [KB/s]

1530 circuits (688 uniform + 842 weighted)

Fig. 6. Correlation of Throughput and RTT

4) Influence of Geographical Diversity: It is also of interest

to study the influence of geographical diversity of routers

on the path on the performance. Nodes that are located in

geographical vicinity could be chosen in order to improve

the experienced network latency. A reasonable application of

location-based path selection would be to let the user choose

the specific countries where entry and exit nodes of circuits

should be located in. With performance in mind, it could also

make sense to choose an entry node in the sender’s country,

while choosing an exit node that is located in the stream

destination’s country.

We have evaluated algorithms that are based on the location

of the used routers in terms of their countries or continents.

For comparing the performance of the different algorithms,

300 three-hop circuits were created, employing each of the

single restrictions once, while the latency of every circuit was

measured five times. From these five results, a mean value

was computed, while the average value of all the single means

finally represents the latency of circuits created with a method.

The different tested restrictions are in fact:

• Use no geographical information at all (UNIFORM)

• All routers from different continents (UniqueContinent)

• Routers from a single continent (SingleContinent-EU)

• Routers from the same country (SingleCountry-DE/US)

Germany and the United States, as well as the continent

Europe, were specifically chosen as examples since it can

be assumed that globally the largest amounts of Tor nodes

are located in Europe and North America, specifically in

Germany and the United States. All of the circuits created

with SingleCountry-EU contain european nodes only, starting

with an entry node in Germany while the nodes for the other

positions were chosen randomly from all european nodes,

without ever using two nodes from the same country in a

path. For SingleCountry-DE and -US, only nodes in Germany

were chosen, respectively in the United States.

Figure 7 shows the results of the latency tests using dif-

ferent path selection methods. As expected, the UniqueCon-

tinent restriction delivered the overall worst latencies while

SingleCountry-DE resulted in very fast circuits. All of the

measurements were done from within Germany during the day

(between 10am and 4pm in the afternoon).

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

UNIFORM UniqueContinent SingleContinent-EU SingleCountry-US SingleCountry-DE

R
T

T
 [
s
e
c
o
n
d
s
]

mean RTT of 300 circuits

Fig. 7. Comparison of GeoIP-Based Path Selection Methods

The additional Table IV shows global statistics about circuit

creations with each of the methods: the median, average and

min values are related to the time needed to establish a circuit.

Note that 60 seconds is the hard coded default timeout on

the circuit building process in the default implementation and

therefore all successfully created circuits needed less than a

minute to be created. The max durations for setups are of

minor interest here, since all of them are shortly below one

minute. The last column lists the number of circuits in percent,

that timed out during their setup.

Median(s) Mean(s) Min(s) Failed(%)

UNIFORM 4.54 6.64 0.20 25

UniqueContinent 5.15 8.30 0.79 38

SingleContinent-EU 3.20 5.73 0.20 30

SingleCountry-US 3.63 6.80 0.39 22

SingleCountry-DE 2.72 4.92 0.16 25

TABLE IV

STATS ON CIRCUIT SETUPS FOR GEOIP-BASED METHODS

From this table it can be seen, that SingleCountry-DE deliv-

ered the lowest values in median, average and min regarding

the circuit-setups, as well as the measured latencies. This lets

us assume on the one hand, that geographical non-diversity

of the used routers eventually leads to better latencies. The

worst results were gained by the UniqueContinent restriction,

as it would be expected. On the other hand this shows a

positive correlation between setup durations of circuits and

their performance in terms of latency.

From the last column it can be seen, that a high geographical

diversity of the routers (UniqueContinent) apparently leads

to a higher percentage of circuits that timeout or otherwise

fail during the setup process, at least when using the default

timeout of 60 seconds.

We have seen that by ensuring a low diversity of the used

routers it is possible to lower the latencies of circuits, but one

always has to keep in mind that the geographical diversity of

the nodes in a path is an important substance to the security

of the system. Using nodes in different countries involves

different jurisdictions, and thus, increases the protection of

users. Additionally, choosing nodes in a same country in-

crements the risk of choosing nodes belonging to the same

operator. Therefore, it is possible to increase the security of

created circuits by ensuring a high diversity of the nodes in

a path. Improvements to the performance of communications

should rather be achieved otherwise, e.g. by using measured

performance values as routing metrics.

5) End-User Perspective: In order to learn the impact of

Tor anonymization on the web browsing performance for end

users, we measured the average time needed to fetch HTTP-

headers of 100 of the most popular websites7 on the Web.

Table V shows the averaged median and mean values of the

time needed to fetch a single HTTP-header, as well as the

averaged standard deviation and min/max values. The first

row contains the results from 100 tests using the default Tor

7The URLs include the top 50 websites from traffic rankings of Germany
and the USA regarding to htt p : //www.alexa.com/ on 9 Jul 2007.

implementation, while the second row shows results from

requesting the same headers without anonymization.

Median(s) Mean(s) Stddev(s) Min/Max(s)

Tor 3.35 4.04 3.18 1.34/23.33

No Anonymization 0.26 0.39 1.25 0.01/11.37

TABLE V

AVERAGE TIME NEEDED TO FETCH HEADERS OF POPULAR WEBSITES

V. DISCUSSION AND PROPOSALS FOR IMPROVEMENTS

The previous section clarified the inhomogeneity of the Tor

network. This is mostly due to the volunteer-based structure

that does not treat nodes differently depending on their avail-

able resources. For being able to provide a certain performance

it is therefore necessary to quantify the nodes w.r.t. different

metrics. This section will use the results from Section IV

to propose new methods of path selection to be used in Tor

with the aim of improving the performance for end-users. The

ideas are generally based on measuring different performance

parameters in the Tor network and using the results as routing

metrics when choosing nodes for circuits.

A. Latency-Based Path Selection

The Tor protocol does not currently provide any mecha-

nisms to measure round-trip times (RTTs) of the provided

anonymous channels. For sticking with a low latency, it would

be very helpful to be able to actively measure latencies of

circuits, as well as of the virtual Tor links between the single

routers.

Our prototypical implementation measures RTTs of circuits

by violating the exit-policy of the last router in the used

path8. This is done by sending a relay connect cell on the

circuit that is to be tested, using 127.0.0.1 as a dummy-

destination. Since the exit policies of all routers will deny

connections to localhost, this attempt results in an error that

can be timed in the measuring client. Making use of Tor’s

leaky-pipe circuit topology, it is even possible to extend this

technique for measuring RTTs of partial circuits. These can

then be used to calculate link-wise RTTs between the single

Tor routers in a path. By modifying the number of encryption

layers when initiating a stream, one can specifically address

every single hop of a circuit as the exit node. After performing

measurements addressing every hop of a circuit once, link-

wise RTTs can be calculated using

RT Tn−1,n = RTT0,n −RT T0,n−1

Note that even if this method delivers quite exact results, it

is proof-of-concept code that should eventually be replaced by

mechanisms that would need to be integrated into the actual

Tor protocol and make use of timestamps to measure link-wise

RTTs.

8This method was also used to measure RTTs in Section IV.

For making use of the measured results it is proposed to

model the explored subnet of the Tor network in a graph struc-

ture. This network model can contain nodes, links between

these nodes and arbitrary node-wise or link-wise performance

metrics. All of the supplied metrics, as well as additional

information from the descriptors, can be combined to calculate

ranking indices for either nodes, links or even complete paths,

that influence the actual selection of paths. Path selection can

then be done probabilistically from this model regarding the

ranking indices, as it is already done in OnionCoffee (see

Section II-B). It is possible to control the specific influence of

a certain metric on node selection by introducing additional

factors/weights.

If path selection is done in this way, it will be more

difficult for attackers to cheat in a way that their nodes are

chosen more often than others, as it is today. Experiments

have to be done in order to study the impact of paths created

in a probabilistic way regarding measured RTTs of single

links to see performance regarding setup durations, latency

and throughput of circuits. Given the possibility to measure

latencies of complete circuits, it is also possible to optimize

load-balancing on the Tor network by ensuring in the clients

that user streams are always attached to circuits currently

having low latencies.

B. Throughput-Based Path Selection

For performance-based routing, throughput should also be

considered to be used as a metric. Instead of using node-wise

bandwidth information taken from the router descriptors, it

would be an advantage to measure throughput for being able

to more precisely predict the capacities of specific nodes or

links. Measuring throughput actively by transferring streams

over certain nodes to probe their capacities is definitely too

much overhead that would have negative impacts on the over-

all network performance. Therefore we propose to measure

throughput passively from within the nodes, but consider the

single TLS links to other routers on the network, instead of

globally counting the total amount of Tor traffic that is passing

a single node.

C. Performance Directory

Both of the techniques that are based on measurements

are sensitive to even short term load variations, which is of

importance in a highly dynamic network like the Tor network.

A network model containing measured RTTs, as well as the

currently available link-wise bandwidth capacities, could be

provided by a trusted directory that can be downloaded by

clients in a compressed format. Alternatively, clients could also

distribute such a model between themselves while merging

information into it.

VI. CONCLUSIONS

In this paper we studied the influence of several disturbing

factors on the general performance of Tor circuits. Hence

it was possible to find out limitations of nodes regarding

various performance metrics, especially network latency and

throughput.

We have compared the average latency of circuits created

with the currently used method of path selection to uniformly

chosen paths to measure the achieved improvements. Thus it

is possible to justify the loss of anonymity introduced by the

probabilistic path selection. Additionally, the influence of the

length of paths on the performance of data transmissions was

studied. Also we have shown that there is a medium positive

correlation of circuit setup durations and the average measured

latencies of the respective circuits.

Further, we have shown that by ensuring a low diversity

of the routers in a path it is possible to lower the latencies

of circuits, while one always has to keep in mind that the

geographical diversity of the nodes in a path is an important

substance to the security of the system. We therefore propose

the integration of a geographical component into Tor clients

that can be used in order to define lower and upper bounds of

location diversity in paths, as well as any other geographical

restrictions.

Finally, we have proposed new methods that are based on

active measurements of circuit latencies and passive through-

put estimations in order to improve the overall performance

of anonymous communication channels provided by Tor. Still,

the latter need to be implemented and practically evaluated.

Special emphasis has to be placed on possible implications of

new methods on anonymity and security of the system.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router,” in Proceedings of the 13th USENIX Security

Symposium, 2004.
[2] O. Berthold, H. Federrath, and S. Köpsell, “Web MIXes: A system

for anonymous and unobservable Internet access,” in Proceedings of

Designing Privacy Enhancing Technologies: Workshop on Design Issues

in Anonymity and Unobservability, H. Federrath, Ed. Springer-Verlag,
LNCS 2009, July 2000, pp. 115–129.

[3] “Tor Node Status,” https://torstat.xenobite.eu/.
[4] “Tor Documentation,” https://www.torproject.org/documentation.html.
[5] R. Wendolsky, D. Herrmann, and H. Federrath, “Performance Compar-

ison of low-latency Anonymisation Services from a User Perspective,”
in Proceedings of the Seventh Workshop on Privacy Enhancing Tech-

nologies (PET 2007), N. Borisov and P. Golle, Eds. Ottawa, Canada:
Springer, June 2007.

[6] G. M. Rose, R. Evaristo, and D. Straub, “Culture and Consumer
Responses to Web Download Time: A Four-Continent Study of Mono
and Polychronism,” in IEEE Transactions on Engineering Management,
vol. 50, no. 1, Feb 2003, pp. 31–44.

[7] S. Köpsell, “Low Latency Anonymous Communication - How Long Are
Users Willing to Wait?” in ETRICS, ser. Lecture Notes in Computer
Science, G. Müller, Ed., vol. 3995. Springer, 2006, pp. 221–237.

[8] “Privoxy: Filtering Web Proxy,” http://www.privoxy.org.
[9] R. Dingledine and N. Mathewson, “Tor Path Specification,”

https://www.torproject.org/svn/trunk/doc/spec/path-spec.txt.
[10] S. Rollyson, “Improving Tor Onion Routing Client Latency,” Georgia

Tech College of Computing, Tech. Rep., 2006.
[11] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating

Latency between Arbitrary Internet End Hosts,” in Proceedings

of the SIGCOMM Internet Measurement Workshop (IMW 2002),
Marseille, France, November 2002. [Online]. Available: citeseer.ist.psu.
edu/gummadi02king.html

[12] M. Perry, “TorFlow,” https://www.torproject.org/svn/torflow/.
[13] R. Dingledine and N. Mathewson, “Tor Control Protocol Specification,”

https://www.torproject.org/svn/trunk/doc/spec/control-spec.txt.

